Authors: Altares-Lopez, Sergio; Garcia-Ripoll, Juan Jose; Ribeiro, Angela


Publication date: 2024/03/25

DOI: 10.1016/j.eswa.2023.122984

Abstract: A new hybrid system is proposed for automatically generating and training quantum-inspired classifiers on grayscale images by using multiobjective genetic algorithms. It is defined a dynamic fitness function to obtain the smallest circuit complexity and highest accuracy on unseen data, ensuring that the proposed technique is generalizable and robust. At the same time, it is minimized the complexity of the generated circuits in terms of the number of entangling operators by penalizing their appearance and number of gates. The size of the images is reduced by using two dimensionality reduction approaches: principal component analysis (PCA), which is encoded within the individual and genetically optimized by the system, and a small convolutional autoencoder (CAE). These two methods are compared with one another and with a classical nonlinear approach to understand their behaviors and to ensure that the classification ability is due to the quantum circuit and not the preprocessing technique used for dimensionality reduction.