Authors: Subires, David; Gomez-Ruiz, Fernando J.; Ruiz-Garcia, Antonia; Alonso, Daniel; del Campo, Adolfo

Journal: PHYSICAL REVIEW RESEARCH

Publication date: 2022/05/09

DOI: 10.1103/PhysRevResearch.4.023104

Abstract: The classical spin-vector Monte Carlo (SVMC) model is a reference benchmark for the performance of a quantum annealer. Yet, as a Monte Carlo method, SVMC is unsuited for an accurate description of the annealing dynamics in real-time. We introduce the spin-vector Langevin (SVL) model as an alternative benchmark in which the time evolution is described by Langevin dynamics. The SVL model is shown to provide a more stringent test than the SVMC model for the identification of quantum signatures in the performance of quantum annealing devices, as we illustrate by describing the Kibble-Zurek scaling associated with the dynamics of symmetry breaking in the transverse field Ising model, recently probed using D-Wave machines. Specifically, we show that D-Wave data are reproduced by the SVL model.